Mating a Siegel Disk with the Julia Set of a Real Quadratic Polynomial

نویسنده

  • R. VALDEZ
چکیده

In this work, we show that it is possible to construct the mating between a quadratic polynomial with a Siegel disk and a real quadratic polynomial possessing a postcritical orbit that is semi-conjugate to a rigid rotation with the same rotation number as the Siegel disk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Xavier Buff And

We prove the existence of quadratic polynomials having a Julia set with positive Lebesgue measure in three cases: the presence of a Cremer fixed point, the presence of a Siegel disk, the presence of infinitely many (satellite) renormalizations.

متن کامل

Xavier Buff and Arnaud Chéritat

We prove the existence of quadratic polynomials having a Julia set with positive Lebesgue measure. We find such examples with a Cremer fixed point, with a Siegel disk, or with infinitely many satellite renormalizations.

متن کامل

Mating Siegel Quadratic Polynomials

1.1. Mating: Definitions and some history. Mating quadratic polynomials is a topological construction suggested by Douady and Hubbard [Do2] to partially parametrize quadratic rational maps of the Riemann sphere by pairs of quadratic polynomials. Some results on matings of higher degree maps exist, but we will not discuss them in this paper. While there exist several, presumably equivalent, ways...

متن کامل

The Measure of Quadratic Julia-lavaurs Sets with a Bounded Type Virtual Siegel Disk Is Zero

1.1. In short. — Let p/q be an irreducible fraction (q > 0). Let us define the polynomial P (z) = ez + z. It is well known that the parabolic fixed point z = 0 is the only non repelling periodic point of P , and moreover that it has precisely q repelling petals. The action of P on the (repelling) Écalle-Voronin cylinders is therefore transitive. We will choose one end of these cylinders and cal...

متن کامل

Biaccessiblility in Quadratic Julia Sets Ii the Siegel and Cremer Cases

Let f be a quadratic polynomial which has an irrationally indi erent xed point Let z be a biaccessible point in the Julia set of f Then In the Siegel case the orbit of z must eventually hit the critical point of f In the Cremer case the orbit of z must eventually hit the xed point Siegel polynomials with biaccessible critical point certainly exist but in the Cremer case it is possible that biac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006